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We Live in Unprecedented Times



Floating Point 
Operations



Stock Prices







How do we actually build anything with these 
systems? 
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The modern world is all about layers of abstractions
An abstraction is an attempt to hide details of your system from you, 
allowing you to avoid worrying about those details.

- A transistor abstracts away the “physical world” into the digital.

- A GPU abstracts away all of the transistors into a single hardware 
unit.

- PyTorch abstracts away the details of how a matmul gets executed 
on a GPU into operations on tensors.

- LLMs abstract away the tensor operations into an API call that takes 
in text and returns text

- Agentic Systems abstract away the LLM API calls into “doing 
something”
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Why should you care about ML systems?
Law of Leaky Abstractions: All non-trivial abstractions, to some degree, are 
leaky.

Understanding the layers 
below you allows you to 
1. Know when your abstractions are 
limiting you.

2. Know where they’re moving.



Understand when your abstractions are limiting you



And when they’re not...



You should understand how your abstractions are 
being used too!



Themes of this Lecture
1. It’s worth venturing out from your layer of the stack.
2. How should you “interact” with other layers of the stack, both above and 

below you?
3. I would like to try and explain as much of the ML systems stack as I can.
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The Bitter Lesson (Rich Sutton)
“The biggest lesson that can be read from 
70 years of AI research is that general 
methods that leverage computation are 
ultimately the most effective, and by a large 
margin.”



The Bitter 
Lesson is just 
Moore’s Law



Death of Dennard Scaling
Dennard Scaling => When transistors get smaller, clock frequency doubles.
Death Caused by Power Leakage! (Quantum Tunneling)



Parallel vs. Sequential



Latency Lags Throughput
End of Dennard Scaling

Latency limited by distance

Latency helps bandwidth, but not vice versa.

Increasing bandwidth can hurt latency

https://claude.site/artifacts/5d014c78-1f9a-44e9-9ba9-0b66a1a00268 

https://claude.site/artifacts/5d014c78-1f9a-44e9-9ba9-0b66a1a00268


Death of Dennard Scaling => Massive Parallelism



Semiconductor Manufacturing is Pretty Insane
https://www.youtube.com/watch?v=xZIZ3LWyhvc  (watch)

https://www.youtube.com/watch?v=xZIZ3LWyhvc


Recommend: Branch Education “How are 
Microchips Made?”



Abstraction: Semiconductors
Semiconductors are an abstraction from the “physical” world to a “digital” one.

They aren’t necessarily required.



Abstraction Leak: Dynamic Power
Question: Do the contents of a tensor affects its performance?



Abstraction Leak: Dynamic Power
Question: Do the contents of a tensor affects its performance?

Answer: Yes they can!



Abstraction Leak: Dynamic Power



Abstraction: GPUs
A computer chip (like a GPU) is an abstraction over a bunch of transistors, 
turning it to a single “thing” from software’s perspective.

But... there are many alternative ways to arrange the transistors.

One interesting way that GPUs abstract over transistors is “floor sweeping”.



Floor Sweeping
Basic problem: 
You have 100 billion transistors in 
your GPU. Some of them did not 
come out “right”. What do you do
with them?

Solution: “Disable” some portions that are too broken, choose some 
configuration that allows you to maximize performance and minimize 
“unusable” chips.



Binning



Abstraction Leak: Floor Sweeping



Abstraction Backpressure: Tensor Cores
- “Hardware built for machine learning” i.e. “hardware built to do matrix 

multiplication”.
- More than just inherent matmul properties, there’s literally a hardware op 

for them.



Tensor-Core Performance
- Introduced tensor

cores

- Drastically increased
ML performance of
Nvidia GPUs.



Abstraction Constraint: Hardware Lottery
- No matter how clever you are, anything that can’t be fit into a matmul will be 15x slower than a 

matmul.
- This is an example of a so-called “hardware lottery”.
- Many other operations that look similar that’ll never be similarly accelerated.
- Nearest neighbor with L2 similarity >> L1 similarity 



You don’t need to worry about every abstraction!
- If you’re working far enough from the hardware, you don’t need to worry 

about whether tensor-cores are the “right” abstraction - you can’t do 
anything about it anyways!

- Perhaps if you’re at a company building their own chips it may be worth 
talking to the hardware folk about having support for operations you want 
(i.e. mx4, fp8, etc.)
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We have a GPU with thousands of cores. What 
now?
Everybody knows how to write code for a single processor - everything you 
write typically just runs on one processor.

But what about when we have thousands of cores? Writing parallel code is so 
much harder... what can we even do?



Abstraction: Array Programming
Goal: Start with operations on arrays - abstract away all details of how your 
“problem” gets mapped to the underlying hardware.

This works well regardless of the underlying hardware!



Abstraction: Interpreter-like Execution
Goal: Abstract away GPU execution details while being performant

When ML models were completely dominated by matmuls, “dynamic” graphs 
were a much nicer abstraction for users to deal with that was just as 
performant.



Abstraction: Interpreter-like Execution
Very “simple” abstraction.

Not only easier to debug, also much more “composable”.



Abstraction Leak: Non-Matmul Performance
Assumption: Neural Networks spend the vast majority of their time doing 
matmuls

We’re only spending 15% of our time doing anything that’s not a matmul.



Hardware constraints changed!
Assumption: Neural Networks spend the vast majority of their time doing 
matmuls

All of a sudden, matmuls get 10x faster, while everything else stays at similar 
speed. 

We’re now spending 60% of our time doing non-matmul things!

So there’s a lot more room to do optimizations.



Dynamic Programming Model with Static Capture
tf.function, jax.jit, torch.compile, etc.

The “programming model” is that it’s interpreter-like execution.

But... we “capture” your function in some manner to turn it into a static graph.

There’s a variety of ways of doing this, but the 2 main approaches folks use 
are:

1. Tracing (jax.jit, torch.fx)
2. Bytecode (torch.compile)





Abstraction “Leak”: Peak Performance 
Another important change over the last 5 years has been the consolidation of 
architectures and the focus on scale.

Whereas previously, 90% of the performance was usually fine, folks often 
want 100% of the performance nowadays.

So... a lot more users “care” about performance nowadays.

But how do you start thinking about Deep Learning performance?



Primer on Deep Learning Performance: Where are 
you spending your time?
1. Compute: Time spent on your GPU doing actual computation

2. Memory: Time spent transferring tensors within a GPU.

3. Overhead: Everything else



Compute



Compute is often not the limiting factor





Time on Compute == Time doing Matmuls



Memory 







How many multiplies do you need to fuse together 
before the kernel takes twice as long?
A100: 

10 Teraflops of multiply compute

2 Terabytes of memory bandwidth

float32 computation

https://claude.site/artifacts/849c93d3-115b-4e69-9e00-9d5bcc3f8389 

https://claude.site/artifacts/849c93d3-115b-4e69-9e00-9d5bcc3f8389




Parallelism among CPU and GPU







Can we abstract over these details?
To some extent... yes! This is what compilers like TorchInductor or XLA do.



What about FlashAttention?
Why didn’t ML frameworks just “automatically” do FlashAttention for us?

Can compilers just handle all optimization for us? 

To answer this, let’s look at an (old-ish) analogue - 
autovectorization/autoparallelism.



Autoparallelism/autovectorization
People saw the death of dennard scaling coming. But everybody was writing single-threaded code. How would we possibly take advantage of parallelism?

Enter... Autoparallelism, where they mainly focused on taking fortran code and making it automatically parallel.



“Autovectorization is not a programming model”

https://pharr.org/matt/blog/2018/04/18/ispc-origins 

Autovectorization isn’t even an abstraction!

https://pharr.org/matt/blog/2018/04/18/ispc-origins


Implicit Parallelism - SIMT (CUDA), MPI, etc.
Program from the perspective 
of one thread.

Parallelism is *implicit* in the programming
model

Very difficult to screw it up.

Autoparallelization faded away in the
90s and 00s



It’s quite difficult to generate FlashAttention from 
scratch

1. Back-to-back matmul

2. Online softmax requires a mathematical rewrite

3. Backwards also requires a mathematical rewrite

4. Typically requires some amount of structured sparsity

That’s why we have...

F.scaled_dot_product_attention!!!



But... people keep coming out with new stuff...

Sliding Window 
Attention

Softcapping

PagedAttention

Alibi

Relative Positional 
Encoding

Jagged Sequences

Neighborhood 
Attention

PrefixLM

TreeAttention

GraphAttention

Causal

Transfusion



Attention operators accumulate kwargs at a 
worrying pace



Even with all the added kwargs, it’s not enough...





So, compilers can’t generate it, and it’s painful to 
do modifications by hand. Are we screwed?

Custom Kernels that are 
impossible for torch.compile to 
generate from scratch

Handwritten/complicated 
FlashAttention kernel

Trivial modifications to 
the kernel that are 
codegenable

Decomposes into

+



Abstraction: FlexAttention



Attention vs FlexAttention



Standard Full Attention (No-op)

def noop(score, b, h, q_idx, kv_idx):
   return score

from torch.nn.attention.flex_attention import flex_attention

flex_attention(query, key, value, 
score_mod=noop).sum().backward()



Alibi Bias
alibi_bias = generate_alibi_bias()  # [num_heads]
def alibi(score, b, h, q_idx, kv_idx):
   bias = alibi_bias[h] * (q_idx - kv_idx)
   return score + bias



Sliding Window Attention
SLIDING_WINDOW = 1024

def sliding_window(b, h, q_idx, kv_idx):
   causal_mask = q_idx >= kv_idx
   window_mask = q_idx - kv_idx <= SLIDING_WINDOW
   return causal_mask & window_mask



PrefixLM

prefix_length: [B]

def prefix_mask(b, h, q_idx, kv_idx):
   return kv_idx <= prefix_length[b]



Document Masking/Jagged Sequences

# The document that each token belongs to
# e.g. [0, 0, 0, 1, 1, 2, 2, 2, 2, 2, 2] corresponds to 
sequence length 3, 2, and 6.
document_id: [SEQ_LEN]

def document_masking(b, h, q_idx, kv_idx):
   return document_id[q_idx] == document_id[kv_idx]

Imagine you have one sequence with 8000 tokens, and then a bunch 
of sequences with 2000 tokens. 



PrefixLM + Document Masking
def prefix_mask(b, h, q_idx, kv_idx):
   return kv_idx < prefix_length

prefix_lm_causal = or_masks(prefix_mask, causal_mask)
doc_prefix_lm_causal_mask = generate_doc_mask_mod(
   prefix_lm_causal, document_id
)





Performance



FlexAttention is an “abstraction”
It hides away “how do you write an efficient flashattention implementation 
with arbitrary masking”, but exposes “different attention variants”

It solves the problem that “writing primitive PyTorch ops is too slow/brittle”, 
while solving the problem that “modifying Attention kernels is a hard/involved 
process”

Personally, I think this is the most “interesting” kind of work in systems 
(coming up with the right abstractions).



Large-Scale Training



How do you even think about large-scale training?
DDP, FSDP, TP, PP, etc.?

But how do we choose between them?

Which one should we be using?

If our GPUs became 8x faster how would that change our parallelism 
strategy?

If we had to train across very-low bandwidth networking how would that 
change our parallelism?

Think about the “system”, not about the technique.



Systems-Level Thinking for Distributed ML
Question: What are we trying to optimize?

Answer 1: We’re trying to optimize the throughput of our model.

Answer 2: Given the model and batch size we’re training with, optimize the 
throughput.

Answer 3: Given the model and batch size we’re training with, maximize the 
amount of time we’re doing matrix multiplications, and minimize the time 
spent

We’re trying to come up with some “abstraction” to make our life easier.



Normal Forwards and Backwards



DDP



Zero-1/Optimizer State Sharding



Zero-3/Fully Sharded Data Parallel



Why can’t we just only use FSDP?
Observation 1: If the total computation time exceeds FSDP’s total 
communication time, then FSDP’s communication can be fully overlapped 
and is considered to be “free”.

When we can use FSDP
Compute Time > Communication Time



Assumptions
1. The global batch size we’re using is identical
2. The model architecture is identical

Therefore... Observation 2: How long we spend on compute is independent of 
our parallelism strategy*



What happens to compute and comms when we 
double GPUs?
Compute: Doubling our number of devices halves how long our compute takes

Comms: Our FSDP comms don’t get any faster as we scale how many devices 
we have*



Concrete Numbers on Scaling with FSDP



Local Batch Size Constraint
If we have 8 million tokens global batch size, and 8k sequence length, then we 
only have 1000 sequences!

Since FSDP requires one sequence per GPU, we can’t scale over 1000 GPUs.



If you’re scaling FSDP, there are 4 situations
Case 1: You haven’t hit either the local batch size limit or the FSDP comms 
limit.

Case 2: You’ve hit the local batch size limit, but not the FSDP comms limit.

Case 3: You’ve hit the FSDP comms limit, but not the local batch size limit.

Case 4: You’ve hit the FSDP comms limit and the local batch size limit.



Case 1: You haven’t hit either the local batch size 
limit or the FSDP comms limit.
Yay! Keep using FSDP



Case 2: You’ve hit the local batch size limit, but not 
the FSDP comms limit.
Solution: Use CP or TP. 
Note that PP does not help!



Case 3: You’ve hit the FSDP comms limit, but not 
the local batch size limit.
Solution: Use PP (or inter-node TP)



Case 4: You’ve hit the FSDP comms limit and the 
local batch size limit.
Solution: Use CP/TP + PP or inter-node TP



In our setting, how does increasing PP effect the 
bubble size?
A: Significant Increase

B: Slight Increase/No Change

C: Significant Decrease

https://claude.site/artifacts/06c22826-52fa-4210-8869-824f43b9eba5 

https://claude.site/artifacts/06c22826-52fa-4210-8869-824f43b9eba5


Abstraction Leak: GPUs don’t error(?)
10 Failures per 1000 node-days: https://arxiv.org/pdf/2410.21680v1

With 1 node, that’s one failure per 100 days.

With 100 nodes, that’s one failure per day.

With 10000 nodes (80k GPUs), that’s one failure per 15 minutes.

Uh oh....

https://arxiv.org/pdf/2410.21680v1


Fault Tolerant Training
If a GPU dies, instead of killing the whole job, let’s just drop the “replica” that 
that GPU is part of.

This leads to us running with a (reduced) global batch size (not semantics 
preserving).



Latency “Wall”



Diloco (semi-sync training)



Interesting Future Questions
1. How can we modify our neural network architectures to 

be more fault tolerant?
2. Can we improve our optimizers to deal better with our 

communication requirements?



Thanks for listening!



Bonus things I can talk about
Async-TP

Zero-Bubble Pipeline Parallelism

Context Parallelism


