
Building Machine Learning
Systems For A Trillion Trillion

Floating Point Operations
(and why you should care)

Horace He
Pytorch Compilers

We Live in Unprecedented Times

Floating Point
Operations

Stock Prices

How do we actually build anything with these
systems?

Semiconductors

Physics

ML Hardware

ML Software

Machine Learning Models

Prompting/End User Applications

Semiconductors

Physics

ML Hardware

ML Software

Machine Learning Models

Prompting/End User Applications

I (mostly)
work here

Semiconductors

Physics

ML Hardware

ML Software

Machine Learning Models

Prompting/End User Applications

Many of you
are here

The modern world is all about layers of abstractions
An abstraction is an attempt to hide details of your system from you,
allowing you to avoid worrying about those details.

- A transistor abstracts away the “physical world” into the digital.

- A GPU abstracts away all of the transistors into a single hardware
unit.

- PyTorch abstracts away the details of how a matmul gets executed
on a GPU into operations on tensors.

- LLMs abstract away the tensor operations into an API call that takes
in text and returns text

- Agentic Systems abstract away the LLM API calls into “doing
something”

Semiconductors

Physics

ML Hardware

ML Software

Machine Learning Models

Prompting/End User Applications

ML
Systems

Why should you care about ML systems?
Law of Leaky Abstractions: All non-trivial abstractions, to some degree, are
leaky.

Understanding the layers
below you allows you to
1. Know when your abstractions are
limiting you.

2. Know where they’re moving.

Understand when your abstractions are limiting you

And when they’re not...

You should understand how your abstractions are
being used too!

Themes of this Lecture
1. It’s worth venturing out from your layer of the stack.
2. How should you “interact” with other layers of the stack, both above and

below you?
3. I would like to try and explain as much of the ML systems stack as I can.

Semiconductors

Physics

ML Hardware

ML Software

Machine Learning Models

Prompting/End User Applications

Semiconductors

Physics

ML Hardware

ML Software

Machine Learning Models

Prompting/End User Applications

The Bitter Lesson (Rich Sutton)
“The biggest lesson that can be read from
70 years of AI research is that general
methods that leverage computation are
ultimately the most effective, and by a large
margin.”

The Bitter
Lesson is just
Moore’s Law

Death of Dennard Scaling
Dennard Scaling => When transistors get smaller, clock frequency doubles.
Death Caused by Power Leakage! (Quantum Tunneling)

Parallel vs. Sequential

Latency Lags Throughput
End of Dennard Scaling

Latency limited by distance

Latency helps bandwidth, but not vice versa.

Increasing bandwidth can hurt latency

https://claude.site/artifacts/5d014c78-1f9a-44e9-9ba9-0b66a1a00268

https://claude.site/artifacts/5d014c78-1f9a-44e9-9ba9-0b66a1a00268

Death of Dennard Scaling => Massive Parallelism

Semiconductor Manufacturing is Pretty Insane
https://www.youtube.com/watch?v=xZIZ3LWyhvc (watch)

https://www.youtube.com/watch?v=xZIZ3LWyhvc

Recommend: Branch Education “How are
Microchips Made?”

Abstraction: Semiconductors
Semiconductors are an abstraction from the “physical” world to a “digital” one.

They aren’t necessarily required.

Abstraction Leak: Dynamic Power
Question: Do the contents of a tensor affects its performance?

Abstraction Leak: Dynamic Power
Question: Do the contents of a tensor affects its performance?

Answer: Yes they can!

Abstraction Leak: Dynamic Power

Abstraction: GPUs
A computer chip (like a GPU) is an abstraction over a bunch of transistors,
turning it to a single “thing” from software’s perspective.

But... there are many alternative ways to arrange the transistors.

One interesting way that GPUs abstract over transistors is “floor sweeping”.

Floor Sweeping
Basic problem:
You have 100 billion transistors in
your GPU. Some of them did not
come out “right”. What do you do
with them?

Solution: “Disable” some portions that are too broken, choose some
configuration that allows you to maximize performance and minimize
“unusable” chips.

Binning

Abstraction Leak: Floor Sweeping

Abstraction Backpressure: Tensor Cores
- “Hardware built for machine learning” i.e. “hardware built to do matrix

multiplication”.
- More than just inherent matmul properties, there’s literally a hardware op

for them.

Tensor-Core Performance
- Introduced tensor

cores

- Drastically increased
ML performance of
Nvidia GPUs.

Abstraction Constraint: Hardware Lottery
- No matter how clever you are, anything that can’t be fit into a matmul will be 15x slower than a

matmul.
- This is an example of a so-called “hardware lottery”.
- Many other operations that look similar that’ll never be similarly accelerated.
- Nearest neighbor with L2 similarity >> L1 similarity

You don’t need to worry about every abstraction!
- If you’re working far enough from the hardware, you don’t need to worry

about whether tensor-cores are the “right” abstraction - you can’t do
anything about it anyways!

- Perhaps if you’re at a company building their own chips it may be worth
talking to the hardware folk about having support for operations you want
(i.e. mx4, fp8, etc.)

Semiconductors

Physics

ML Hardware

ML Software

Machine Learning Models

Prompting/End User Applications

We have a GPU with thousands of cores. What
now?
Everybody knows how to write code for a single processor - everything you
write typically just runs on one processor.

But what about when we have thousands of cores? Writing parallel code is so
much harder... what can we even do?

Abstraction: Array Programming
Goal: Start with operations on arrays - abstract away all details of how your
“problem” gets mapped to the underlying hardware.

This works well regardless of the underlying hardware!

Abstraction: Interpreter-like Execution
Goal: Abstract away GPU execution details while being performant

When ML models were completely dominated by matmuls, “dynamic” graphs
were a much nicer abstraction for users to deal with that was just as
performant.

Abstraction: Interpreter-like Execution
Very “simple” abstraction.

Not only easier to debug, also much more “composable”.

Abstraction Leak: Non-Matmul Performance
Assumption: Neural Networks spend the vast majority of their time doing
matmuls

We’re only spending 15% of our time doing anything that’s not a matmul.

Hardware constraints changed!
Assumption: Neural Networks spend the vast majority of their time doing
matmuls

All of a sudden, matmuls get 10x faster, while everything else stays at similar
speed.

We’re now spending 60% of our time doing non-matmul things!

So there’s a lot more room to do optimizations.

Dynamic Programming Model with Static Capture
tf.function, jax.jit, torch.compile, etc.

The “programming model” is that it’s interpreter-like execution.

But... we “capture” your function in some manner to turn it into a static graph.

There’s a variety of ways of doing this, but the 2 main approaches folks use
are:

1. Tracing (jax.jit, torch.fx)
2. Bytecode (torch.compile)

Abstraction “Leak”: Peak Performance
Another important change over the last 5 years has been the consolidation of
architectures and the focus on scale.

Whereas previously, 90% of the performance was usually fine, folks often
want 100% of the performance nowadays.

So... a lot more users “care” about performance nowadays.

But how do you start thinking about Deep Learning performance?

Primer on Deep Learning Performance: Where are
you spending your time?
1. Compute: Time spent on your GPU doing actual computation

2. Memory: Time spent transferring tensors within a GPU.

3. Overhead: Everything else

Compute

Compute is often not the limiting factor

Time on Compute == Time doing Matmuls

Memory

How many multiplies do you need to fuse together
before the kernel takes twice as long?
A100:

10 Teraflops of multiply compute

2 Terabytes of memory bandwidth

float32 computation

https://claude.site/artifacts/849c93d3-115b-4e69-9e00-9d5bcc3f8389

https://claude.site/artifacts/849c93d3-115b-4e69-9e00-9d5bcc3f8389

Parallelism among CPU and GPU

Can we abstract over these details?
To some extent... yes! This is what compilers like TorchInductor or XLA do.

What about FlashAttention?
Why didn’t ML frameworks just “automatically” do FlashAttention for us?

Can compilers just handle all optimization for us?

To answer this, let’s look at an (old-ish) analogue -
autovectorization/autoparallelism.

Autoparallelism/autovectorization
People saw the death of dennard scaling coming. But everybody was writing single-threaded code. How would we possibly take advantage of parallelism?

Enter... Autoparallelism, where they mainly focused on taking fortran code and making it automatically parallel.

“Autovectorization is not a programming model”

https://pharr.org/matt/blog/2018/04/18/ispc-origins

Autovectorization isn’t even an abstraction!

https://pharr.org/matt/blog/2018/04/18/ispc-origins

Implicit Parallelism - SIMT (CUDA), MPI, etc.
Program from the perspective
of one thread.

Parallelism is *implicit* in the programming
model

Very difficult to screw it up.

Autoparallelization faded away in the
90s and 00s

It’s quite difficult to generate FlashAttention from
scratch

1. Back-to-back matmul

2. Online softmax requires a mathematical rewrite

3. Backwards also requires a mathematical rewrite

4. Typically requires some amount of structured sparsity

That’s why we have...

F.scaled_dot_product_attention!!!

But... people keep coming out with new stuff...

Sliding Window
Attention

Softcapping

PagedAttention

Alibi

Relative Positional
Encoding

Jagged Sequences

Neighborhood
Attention

PrefixLM

TreeAttention

GraphAttention

Causal

Transfusion

Attention operators accumulate kwargs at a
worrying pace

Even with all the added kwargs, it’s not enough...

So, compilers can’t generate it, and it’s painful to
do modifications by hand. Are we screwed?

Custom Kernels that are
impossible for torch.compile to
generate from scratch

Handwritten/complicated
FlashAttention kernel

Trivial modifications to
the kernel that are
codegenable

Decomposes into

+

Abstraction: FlexAttention

Attention vs FlexAttention

Standard Full Attention (No-op)

def noop(score, b, h, q_idx, kv_idx):
 return score

from torch.nn.attention.flex_attention import flex_attention

flex_attention(query, key, value,
score_mod=noop).sum().backward()

Alibi Bias
alibi_bias = generate_alibi_bias() # [num_heads]
def alibi(score, b, h, q_idx, kv_idx):
 bias = alibi_bias[h] * (q_idx - kv_idx)
 return score + bias

Sliding Window Attention
SLIDING_WINDOW = 1024

def sliding_window(b, h, q_idx, kv_idx):
 causal_mask = q_idx >= kv_idx
 window_mask = q_idx - kv_idx <= SLIDING_WINDOW
 return causal_mask & window_mask

PrefixLM

prefix_length: [B]

def prefix_mask(b, h, q_idx, kv_idx):
 return kv_idx <= prefix_length[b]

Document Masking/Jagged Sequences

The document that each token belongs to
e.g. [0, 0, 0, 1, 1, 2, 2, 2, 2, 2, 2] corresponds to
sequence length 3, 2, and 6.
document_id: [SEQ_LEN]

def document_masking(b, h, q_idx, kv_idx):
 return document_id[q_idx] == document_id[kv_idx]

Imagine you have one sequence with 8000 tokens, and then a bunch
of sequences with 2000 tokens.

PrefixLM + Document Masking
def prefix_mask(b, h, q_idx, kv_idx):
 return kv_idx < prefix_length

prefix_lm_causal = or_masks(prefix_mask, causal_mask)
doc_prefix_lm_causal_mask = generate_doc_mask_mod(
 prefix_lm_causal, document_id
)

Performance

FlexAttention is an “abstraction”
It hides away “how do you write an efficient flashattention implementation
with arbitrary masking”, but exposes “different attention variants”

It solves the problem that “writing primitive PyTorch ops is too slow/brittle”,
while solving the problem that “modifying Attention kernels is a hard/involved
process”

Personally, I think this is the most “interesting” kind of work in systems
(coming up with the right abstractions).

Large-Scale Training

How do you even think about large-scale training?
DDP, FSDP, TP, PP, etc.?

But how do we choose between them?

Which one should we be using?

If our GPUs became 8x faster how would that change our parallelism
strategy?

If we had to train across very-low bandwidth networking how would that
change our parallelism?

Think about the “system”, not about the technique.

Systems-Level Thinking for Distributed ML
Question: What are we trying to optimize?

Answer 1: We’re trying to optimize the throughput of our model.

Answer 2: Given the model and batch size we’re training with, optimize the
throughput.

Answer 3: Given the model and batch size we’re training with, maximize the
amount of time we’re doing matrix multiplications, and minimize the time
spent

We’re trying to come up with some “abstraction” to make our life easier.

Normal Forwards and Backwards

DDP

Zero-1/Optimizer State Sharding

Zero-3/Fully Sharded Data Parallel

Why can’t we just only use FSDP?
Observation 1: If the total computation time exceeds FSDP’s total
communication time, then FSDP’s communication can be fully overlapped
and is considered to be “free”.

When we can use FSDP
Compute Time > Communication Time

Assumptions
1. The global batch size we’re using is identical
2. The model architecture is identical

Therefore... Observation 2: How long we spend on compute is independent of
our parallelism strategy*

What happens to compute and comms when we
double GPUs?
Compute: Doubling our number of devices halves how long our compute takes

Comms: Our FSDP comms don’t get any faster as we scale how many devices
we have*

Concrete Numbers on Scaling with FSDP

Local Batch Size Constraint
If we have 8 million tokens global batch size, and 8k sequence length, then we
only have 1000 sequences!

Since FSDP requires one sequence per GPU, we can’t scale over 1000 GPUs.

If you’re scaling FSDP, there are 4 situations
Case 1: You haven’t hit either the local batch size limit or the FSDP comms
limit.

Case 2: You’ve hit the local batch size limit, but not the FSDP comms limit.

Case 3: You’ve hit the FSDP comms limit, but not the local batch size limit.

Case 4: You’ve hit the FSDP comms limit and the local batch size limit.

Case 1: You haven’t hit either the local batch size
limit or the FSDP comms limit.
Yay! Keep using FSDP

Case 2: You’ve hit the local batch size limit, but not
the FSDP comms limit.
Solution: Use CP or TP.
Note that PP does not help!

Case 3: You’ve hit the FSDP comms limit, but not
the local batch size limit.
Solution: Use PP (or inter-node TP)

Case 4: You’ve hit the FSDP comms limit and the
local batch size limit.
Solution: Use CP/TP + PP or inter-node TP

In our setting, how does increasing PP effect the
bubble size?
A: Significant Increase

B: Slight Increase/No Change

C: Significant Decrease

https://claude.site/artifacts/06c22826-52fa-4210-8869-824f43b9eba5

https://claude.site/artifacts/06c22826-52fa-4210-8869-824f43b9eba5

Abstraction Leak: GPUs don’t error(?)
10 Failures per 1000 node-days: https://arxiv.org/pdf/2410.21680v1

With 1 node, that’s one failure per 100 days.

With 100 nodes, that’s one failure per day.

With 10000 nodes (80k GPUs), that’s one failure per 15 minutes.

Uh oh....

https://arxiv.org/pdf/2410.21680v1

Fault Tolerant Training
If a GPU dies, instead of killing the whole job, let’s just drop the “replica” that
that GPU is part of.

This leads to us running with a (reduced) global batch size (not semantics
preserving).

Latency “Wall”

Diloco (semi-sync training)

Interesting Future Questions
1. How can we modify our neural network architectures to

be more fault tolerant?
2. Can we improve our optimizers to deal better with our

communication requirements?

Thanks for listening!

Bonus things I can talk about
Async-TP

Zero-Bubble Pipeline Parallelism

Context Parallelism

