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Floating Point
Operations
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Stock Prices

Market Summary > NVIDIA Corp

145.61 uso

+140.42 (2,705.59%) 4 past 5 years

Closed: Nov 6, 7:59 PM EST - Disclaimer
After hours 145.30 -0.31 (0.21%)
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Open 142.96 Mkt cap 3.57T CDP score B
High 146.49 P/E ratio 68.39 52-wk high 146.49

Low 141.96 Div yield 0.027% 52-wk low 44.90



Microsoft, OpenAl plan $100 billion data-
center project, media report says

By Reuters

March 29, 2024 5:14 PM EDT - Updated 7 months ago 7 D | Aa .<: |

}' Fortune

Google will help build seven nuclear reactors to power its Al
systems

Google is adding nuclear plants to its seemingly ever-growing portfolio. The company
has partnered with Kairos Power to back the construction of seven small...

BUSINESS

The Al boom may give Three Mile Island

a new life supplying power to
Microsoft’s data centers

@ Data Center Dynamics

Elon Musk claims 300,000 B200 GPU supercomputer for xAl
by next summer; the usual caveats apply

Elon Musk claims that artificial intelligence startup xAl will deploy a 300,000 Nvidia
Blackwell B200 GPU data center by next summer.

Jun 3, 2024



% Reuters
Exclusive: OpenAl co-founder Sutskever's new safety-focused
Al startup SSI raises $1 billion

SAN FRANCISCO/NEW YORK, Sept 4 - Safe Superintelligence (SSI), newly co-founded by
OpenAl's former chief scientist llya Sutskever,...

Sep 4, 2024

J& CNBC
Microsoft-backed Mistral Al raises S645 million at a S6 billion
valuation

Microsoft-backed Mistral Al raises $645 million at a $6 billion valuation ... French
founder of artificial intelligence startup Mistral Al, Arthur...

Jun 12,2024




How do we actually build anything with these
systems?
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The modern world is all about layers of abstractions

An abstraction is an attempt to hide details of your system from you,
allowing you to avoid worrying about those details.

- A transistor abstracts away the “physical world” into the digital.

- A GPU abstracts away all of the transistors into a single hardware
unit.

- PyTorch abstracts away the details of how a matmul gets executed
on a GPU into operations on tensors.

- LLMs abstract away the tensor operations into an API call that takes
in text and returns text

- Agentic Systems abstract away the LLM API calls into “doing
something”
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Why should you care about ML systems?

Law of Leaky Abstractions: All non-trivial abstractions, to some degree, are

leaky.

Understanding the layers ‘( L
below you allows you to 5 I [ l
1. Know when your abstractions are P

limiting you.

2. Know where they’re moving.




Understand when your abstractions are limiting you

Convolutional Neural Networks for Object Classification in CUDA

Alex Krizhevsky (kriz@cs.toronto.edu)
April 16, 2009



And when they’re not...

)

Btw, one reason this is underused is because log-space is still hard and
slow in 2021.

Sasha Rush
@srush nlp

If someone (@NVIDIAAI?), would implement a fast log-space MM [(A[...,
None] + B[None]).logsumexp(-2)] it would be amazing. Been failing to do

this for years, Cutlass is hard “*



You should understand how your abstractions are
being used too!

[Submitted on 6 Nov 2019]

Fast Transformer Decoding: One Write-Head is All You Need

Noam Shazeer

Multi-head attention layers, as used in the Transformer neural sequence model, are a powerful alternative to RNNs for moving information across and between sequences. While training
these layers is generally fast and simple, due to parallelizability across the length of the sequence, incremental inference (where such paralleization is impossible) is often slow, due to
the memory-bandwidth cost of repeatedly loading the large "keys" and "values" tensors. We propose a variant called multi-query attention, where the keys and values are shared across
all of the different attention "heads", greatly reducing the size of these tensors and hence the memory bandwidth requirements of incremental decoding. We verify experimentally that

the resulting models can indeed be much faster to decode, and incur only minor quality degradation from the baseline.



Themes of this Lecture

1. It’s worth venturing out from your layer of the stack.

2. How should you “interact” with other layers of the stack, both above and
below you?

3. | would like to try and explain as much of the ML systems stack as | can.
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The Bitter Lesson (Rich Sutton)

“The biggest lesson that can be read from
/70 years of Al research is that general
methods that leverage computation are

ultimately the most effective, and by a large
margin.”

' STATISTICAL LEARNING 5

Gentlemen, our learner
overgeneralizes because the
C-Dimension of our Kernel
s too high, Get some
experts and minimze the
structural risk in a new one.
Rework our loss function,
ake the next kernel stable,
nbiased and consider using 3
oft margin

STACK
MORE
LAYERS

LAYERS




The Bitter
Lesson is just
Moore’s Law

Moore’s Law: The number of transistors on microchips doubles every two years [oS@WIls

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. in Data
This advancement is important for other aspects of technological progress in computing - such as processing speed or the price of computers.
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Death of Dennard Scaling

Dennard Scaling => When transistors get smaller, clock frequency doubles.
Death Caused by Power Leakage! (Quantum Tunneling)
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Transistors got exponentially faster until the moment they didn't.



Parallel vs. Sequential

Sequential

Parallel




Latency Lags Throughput

End of Dennard Scaling
Latency limited by distance
Latency helps bandwidth, but not vice versa.

Increasing bandwidth can hurt latency

https://claude.site/artifacts/5d014c78-1f9a-44e9-9ba9-0b66a1a00268



https://claude.site/artifacts/5d014c78-1f9a-44e9-9ba9-0b66a1a00268

Death of Dennard Scaling => Massive Parallelism
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Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K.
Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2015 by K. Rupp



Semiconductor Manufacturing is Pretty Insane
https://www.voutube.com/watch?v=xZ1Z31L.Wyhvc (watch)



https://www.youtube.com/watch?v=xZIZ3LWyhvc

Recommend: Branch Education “How are
Microchips Made?”

0.0 %

Branch
Nicole Morena, Tozy Kitchen, Blender.org Educatlon



Abstraction: Semiconductors

Semiconductors are an abstraction from the “physica

I”

world to a “digital” one.

They aren’t necessarily required.
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Abstraction Leak: Dynamic Power

Question: Do the contents of a tensor affects its performance?

- T
; v
- ».' N
- A,

& - r

zero_inputs = torch.zeros(N, N)
randn_tinputs = torch.randn(N, N)

rand_inputs = torch.rand(N, N)
benchmark(zero_tinputs)
benchmark(randn_tinputs)
benchmark(rand_tinputs)




Abstraction Leak: Dynamic Power

Question: Do the contents of a tensor affects its performance?

£ TP
¢ “
-

zero_inputs = torch.zeros(N, N)
randn_tinputs = torch.randn(N, N)

rand_inputs = torch.rand(N, N)
benchmark(zero_tinputs)
benchmark(randn_inputs)
benchmark(rand_tinputs)

Answer: Yes they can!



Abstraction Leak: Dynamic Power
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Abstraction: GPUs

A computer chip (like a GPU) is an abstraction over a bunch of transistors,
turning it to a single “thing” from software’s perspective.

But... there are many alternative ways to arrange the transistors.

One interesting way that GPUs abstract over transistors is “floor sweeping”.



Floor Sweeping

Basic problem:

You have 100 billion transistors in
your GPU. Some of them did not
come out “right”. What do you do
with them?

Solution: “Disable” some portions that are too broken, choose some
configuration that allows you to maximize performance and minimize
“unusable” chips.
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Abstraction Leak: Floor Sweeping

The full implementation of the GH100 GPU includes the following units:

8 GPCs, 72 TPCs (9 TPCs/GPC), 2 SMs/TPC, 144 SMs per full GPU
128 FP32 CUDA Cores per SM, 18432 FP32 CUDA Cores per full GPU
4 Fourth-Generation Tensor Cores per SM, 576 per full GPU

6 HBM3 or HBM2e stacks, 12 512-bit Memory Controllers

60 MB L2 Cache

Fourth-Generation NVLink and PCle Gen 5

The NVIDIA H100 GPU with SXM5 board form-factor includes the following units:

[8 GPCs, 66 TPCs, 2 SMs/TPC, 132 SMs per GPU ]
128 FP32 CUDA Cores per SM, 16896 FP32 CUDA Cores per GPU
4 Fourth-generation Tensor Cores per SM, 528 per GPU
80 GB HBM3, 5 HBM3 stacks, 10 512-bit Memory Controllers
50 MB L2 Cache
Fourth-Generation NVLink and PCle Gen 5

The NVIDIA H100 GPU with a PCle Gen 5 board form-factor includes the following units:

7 or 8 GPCs, 57 TPCs, 2 SMs/TPC, 114 SMs per GPU

128 FP32 CUDA Cores/SM, 14592 FP32 CUDA Cores per GPU
4 Fourth-generation Tensor Cores per SM, 456 per GPU

80 GB HBM2e, 5 HBM2e stacks, 10 512-bit Memory Controllers
50 MB L2 Cache

Fourth-Generation NVLink and PCle Gen 5



Abstraction Backpressure: Tensor Cores

- “Hardware built for machine learning” i.e. “hardware built to do matrix
multiplication”.

- More than just inherent matmul properties, there’s literally a hardware op
for them.

NVIDIA V100 FP32 NVIDIA A100 Tensor Core TF32
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Tensor-Core Performance

- Introduced tensor
cores

- Drastically increased
ML performance of

Nvidia GPUs.

TFLOP/S

Matmul vs. non-matmul FLOPS across GPUs

10° ] —— non-matmul
1 = matmul
102 -
10t'4 ____—
K80 M80 P100 V100 Al100 H100

GPU




Abstraction Constraint: Hardware Lottery

- No matter how clever you are, anything that can’t be fit into a matmul will be 15x slower than a

matmul.

- This is an example of a so-called “hardware lottery”.

- Many other operations that look similar that’ll never be similarly accelerated.

- Nearest neighbor with L2 similarity >> L1 similarity

“%%  SashaRush
by @srush nlp

Btw, one reason this is underused is because log-space is still hard and
slow in 2021.

If someone (@NVIDIAAI?), would implement a fast log-space MM [(A[...,
None] + B[None]).logsumexp(-2)] it would be amazing. Been failing to do
this for years, Cutlass is hard ¥



You don’t need to worry about every abstraction!

- If you’re working far enough from the hardware, you don’t need to worry
about whether tensor-cores are the “right” abstraction - you can’t do
anything about it anyways!

- Perhaps if you're at a company building their own chips it may be worth
talking to the hardware folk about having support for operations you want

(i.,e. mx4, fp8, etc.)
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We have a GPU with thousands of cores. What
now?

Everybody knows how to write code for a single processor - everything you
write typically just runs on one processor.

But what about when we have thousands of cores? Writing parallel code is so
much harder... what can we even do?




Abstraction: Array Programming

Goal: Start with operations on arrays - abstract away all details of how your
“problem” gets mapped to the underlying hardware.

This works well regardless of the underlying hardware!

® 0O

torch.add(A, B)
torch.mm(A, B)




Abstraction: Interpreter-like Execution

Goal: Abstract away GPU execution details while being performant

When ML models were completely dominated by matmuls, “dynamic” graphs
were a much nicer abstraction for users to deal with that was just as

performant.

GPU

streaming streaming streaming

multiprocessor | | multiprocessor | | multiprocessor

PCI BUS , i | _ ‘ ,
streaming streaming streaming

CPU
<}::> multiprocessor | | multiprocessor | | multiprocessor

RAM Klr > DRAM




Abstraction: Interpreter-like Execution

Very “simple” abstraction.

Not only easier to debug, also much more “composable”.




Abstraction Leak: Non-Matmul Performance

Assumption: Neural Networks spend the vast majority of their time doing
matmuls

We’re only spending 15% of our time doing anything that’s not a matmul.

|2mS 1 1 1 L |3 ms 1 1 1 1 |4 ms 1 1 L 1 |5 ms 1

python (pid 41723)

ampere_sgemm._... - ampere_sgemm_... - ampere_sgemim_... - ampere_sgemm._... - ampere_sgemim_...



Hardware constraints changed!

A -— - W - - - - -_ - W M a - =a W = - W - - - - -
\ 4 " Ul He \ ATA 9 L 4 L \y €/ o \Y

rratrmuls

All of a sudden, matmuls get 10x faster, while everything else stays at similar
speed.

We’re now spending 60% of our time doing non-matmul things!

So there’s a lot more room to do optimizations.

[2,000 us 12,500 us

voideutl.. [ voccut-- [ vodct- [ ot [ - [




Dynamic Programming Model with Static Capture

tf.function, jax.jit, torch.compile, etc.
The “programming model” is that it’s interpreter-like execution.
But... we “capture” your function in some manner to turn it into a static graph.

There’s a variety of ways of doing this, but the 2 main approaches folks use
are:

1. Tracing (jax.jit, torch.fx)
2. Bytecode (torch.compile)
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_PyEval_EvalFrameDefault() ) . transform (torch.* bits)
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Abstraction “Leak”: Peak Performance

Another important change over the last 5 years has been the consolidation of
architectures and the focus on scale.

Whereas previously, 90% of the performance was usually fine, folks often
want 100% of the performance nowadays.

So... alot more users “care” about performance nowadays.

But how do you start thinking about Deep Learning performance?



Primer on Deep Learning Performance: Where are
you spending your time?
1. Compute: Time spent on your GPU doing actual computation

2. Memory: Time spent transferring tensors within a GPU.

3. Overhead: Everything else



Compute




Compute is often not the limiting factor




Table 1. Proportions for operator classes in PyTorch.

Operator class % tlop % Runtime

A Tensor contraction  99.80 61.0
[] Stat. normalization 0.17 25.5
O Element-wise 0.03 13.5



Time on Compute == Time doing Matmuls

H100 SXM

FP64 34 teraFLOPS
FP64 Tensor Core 67 teraFLOPS
FP32 67 teraFLOPS
TF32 Tensor Core’ 989 teraFLOPS
BFLOAT16 Tensor Core’ 1,979 teraFLOPS
FP16 Tensor Core’ 1,979 teraFLOPS
FP8 Tensor Core’ 3,958 teraFLOPS

INT8 Tensor Core” 3,958 TOPS



Memory







1




How many multiplies do you need to fuse together
before the kernel takes twice as long?

A100:

10 Teraflops of multiply compute Ast i Tenser By

for _ in range(repeat):
X = X %k 2
return x

2 Terabytes of memory bandwidth

float32 computation

https://claude.site/artifacts/849¢c93d3-115b-4e69-9e00-9d5bcc3f8389



https://claude.site/artifacts/849c93d3-115b-4e69-9e00-9d5bcc3f8389

Reset Zoom

|
|

c10::Dispatcher::redispatch<at:: Tensor, at::Tensor const&, at::Tensor const&, c10::Scalar>

' undl::amograd:;\lariable'lype::(anonymns namespace)::add_Tensor |
c10::impl::wrap_kemel_functor_unboxed_<c10::impl::detail::WrapFunctionlntoFunctor_<c10::C




Parallelism among CPU and GPU

NoT Over I/I@M () \/@f[’n%ﬁ\
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If our GPU operators are big enough, then our CPU can run ahead of the GPU (and thus the CPU overhead
is irrelevant). On the other hand, if our GPU operators are too small, then our GPU is going to spend most of
its time as an expensive paperweight.
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V&S 1,017,700 ps




Can we abstract over these details?

To some extent... yes! This is what compilers like Torchlnductor or XLA do.

Graph Acquisition  Graph Lowering Graph Compilation

. ' Torchinductor powered by OpenAl Triton

|
|
: " Future:
|

|
| ATenI‘lP rim IR ' Your Own Backend
nvFuser
TorchDynamo : ' TVM
AOTAutograd : | XLA
| n i AlTemplate
: : ' TensorRT
I i I
; : : EEN EEN EEN
: (] : @ g : EEN— EEN EEE
v oW Eom EEE
def foo(x): | Convad o -
| I |
y = F.conv2d(x, ...) : i) : v : = sl i
z = F.batch_norm2d(y, ...) e BatchNorm —  [x]- —> |mmm EEE 11
return F.relu(z) : 3 : : SNy |SEE| |BEN
| | |
| RelU | * I
| Y | | T EEE
| [¥] | | EEE—EEE
| : - : EEE EEE
I | |



What about FlashAttention?

Why didn’t ML frameworks just “automatically” do FlashAttention for us?

Can compilers just handle all optimization for us?

To answer this, let’s look at an (old-ish) analogue -
autovectorization/autoparallelism.



Autoparallelism/autovectorization

People saw the death of dennard scaling coming. But everybody was writing single-threaded code. How would we possibly take advantage of parallelism?

Enter... Autoparallelism, where they mainly focused on taking fortran code and making it automatically parallel.

Frequency (GHz)

T R R
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Transistors got exponentially faster until the moment they didn't.



“Autovectorization is not a programming model”

The problem with an auto-vectorizer 1s that as long as vectorization can fail (and it will), then 1f
you’re a programmer who actually cares about what code the compiler generates for your program,
you must come to deeply understand the auto-vectorizer. Then, when 1t fails to vectorize code you
want to be vectorized, you can either poke it in the right ways or change your program in the right
ways so that it works for you again. This 1s a horrible way to program,; it’s all alchemy and guesswork
and you need to become deeply specialized about the nuances of a single compiler’s implementation

—something you wouldn’t otherwise need to care about one bit.

And God help you when they release a new version of the compiler with changes to the auto-

vectorizer’s implementation.

Autovectorization isn’t even an abstraction!


https://pharr.org/matt/blog/2018/04/18/ispc-origins

Implicit Parallelism - SIMT (CUDA), MPI, etc.

Program from the perspective
BLOCK = 512
Of one thread' # This is a GPU kernel in Numba.
) ) ) o ) ) # Diffe;ent instancgs of this
Parallelism is *Iimplicit™ in the programmi g
def add(X, Y, Z, N):
rT1C)CjEE| # In Numba/CUDA, each kernel
# instance itself uses an SIMT execution
. . . # model, where instructions are executed in
Vel‘y d|ff|CU|t tO screw |t up. # parallel for different values of threadIdx
tid = threadIdx.x
. ) . 1d = Kk .
Autoparallelization faded away in the ¥ scalar index
idx.= bid * BLOCK + tid
90s and O0s A .
ere 1s no pointer in Numba.

# Z,X,Y are dense tensors
Z[idx] = X[idx] + Y[idx]

grid = (ceil_div(N, BLOCK),)
block = (BLOCK,)
add[grid, block](x, y, z, x.shape[O])




It’s quite difficult to generate FlashAttention from
scratch

1. Back-to-back matmul

2. Online softmax requires a mathematical rewrite

3. Backwards also requires a mathematical rewrite

4. Typically requires some amount of structured sparsity
That’s why we have...

F.scaled_dot_product_attention!!l



But... people keep coming out with new stuff...

PrefixLM Transfusion
Sliding Window -
Attention Alibl TreeAttention
Softcapping
Relative Positional Causal
Encoding
PagedAttention Jagged Sequences
Neighborhood GraphAttention

Attention



Attention operators accumulate kwargs at a
worrying pace

v def _flash_attn_forward/(
q, k, v, dropout_p, softmax_scale, causal, window_size, softcap, alibi_slopes, return_softmax

- llI « u N ) T - - LI | f -\ o - -

Q K def flash_attn_with_kvcache(
\. ‘ "’/.“ . - . -~ aa - q '
l" — ‘ Scale Options: k_cache,
. 1. No Scale
Attn | 2. Scalar Multiply v_cache,
Scale \ _ 3. Full tensor multiply -
\ ¢ ' ' 4 4, Scale + Full tensor bias k:None,
‘t Scale Options |
K wask Options: v=None,
| | A rotary_cos=None,
| Mask Options | i e rotary_sin=None,
S k . . 2
ol 6. Sding Window: ATaontion mask cache_seqlens: Optional[Union[(int, torch.Tensor)]l] = None,
_ e I Attention mas| : _
[ sommax [ s cache_batch_idx: Optionall[torch.Tensor] = None,
S B H.O#Qw” ” block_table: Optional[torch.Tensor] = None,
, Dropost ;
( h 1. No Dropout —
’ g;m AR s - R softmax_scale=None,
v. | 3. User generated mask for causal=False,
D l dropout

- window_size=(-1, -1), # -1 means infinite context window
BMMm2
\ { J rotary_interleaved=True,
0

alibi_slopes=None,



Even with all the added kwargs. it’s not enough...
en (e/treats)
6 (B@andertson:)cdefg w

is there still not flash attn for prefixim? someone who knows CUDA /
triton should have banged this out by now right where can i find it

8:07 AM - Jun 12, 2024 - 32K Views
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The other striking thing is how little support these codebases have for
large scale encoder-decoder training or even prefixLM training. To that
end, even flash attention has consistently declined to provide support

for prefixLM training (i.e., custom masks) despite reasonable demand on
their github 1ssues for whatever reason.
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Figure 4: Expanding on the causal mask, Trans-
fusion allows patches of the same image to con-
dition on each other.



So, compilers can’t generate it, and it’s painful to
do modifications by hand. Are we screwed?

Custom Kernels that are
impossible for torch.compile to
generate from scratch

Decomposes into

Handwritten/complicated Trivial modifications to
FlashAttention kernel + the kernel that are
codegenable



Abstraction: FlexAttention

Atention Variant Support




Attention vs FlexAttention

KT
Attention(Q, K, V') = softmax (Q ) V

Nz

ClexAttention(Q), K, V') = softmax ( re_1mod (




Standard Full Attention (No-op)

def noop(score, b, h, g_idx, kv_idx):
 return score

from torch.nn.attention.flex_attention import flex_attention

flex_attention(query, key, value,
'score_mod=noop) .sum() .backward()



‘alibi_bias = generate_alibi_bias() # [num_heads]
Alibi Bias  def alibi(score, b, h, q_idx, kv_idx):
~ bias =lalibi_bias[h] /* (q_idx - kv_idx)
return score + bias

Jonathan Frankle €
@jefrankle

)

Agreed on all points. Kernels come out for ROPE first because of [lama.
That's why we switched to RoPE for DBRX. It wasn't better than ALIB..

10:29 AM - Jun 22, 2024 - 1,109 Views
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Sliding Window Attention

éSLIDING_WINDOW - 1924

def sliding_window(b, h, q_idx, kv_idx):

5 causal_mask = g_idx >= kv_idx
window_mask = qg_idx - kv_idx <= SLIDING_WINDOW
return causal_mask & window_mask

The cat sat on the The cat sat on the window size
The | HNRNENEER
cat
sat Layers
on
(]
the : X

Tokens

Vanilla Attention Sliding Window Attention Effective Context Length



PrefixLM

prefix_length: [B]

édef prefix_mask(b, h, q_idx, kv_idx): " Bras
5 m
= return kV_idX <= preflx_length[b] 87 1g
5 g img2
e | | img3
i [bos]
X | | 1inpl
L .
o inp2
| [sep]
= outl
2| [out2
E [eos]
D1 |[pad]




Document Masking/Jagged Sequences

Imagine you have one sequence with 8000 tokens, and then a bunch
of sequences with 2000 tokens.

# The document that each token belongs to

é# e.g. [0, 0, 0, 1, 1, 2, 2, 2, 2, 2, 2] corresponds to 5

‘sequence length 3, 2, and 6. L
dOCUITIen't_le [SEQ_LEN] KVO KVI KV2 KV3 KV4 KV5 KV6 KV7 KV8 KV9 KVIO

QO

Q11

édef document_masking(b, h, q_idx, kv_idx): -
~ return document_id[q_idx] == document_id[kv_idx]

e w Q4

3

O

Q5

Q6

Q7

Q8

Q9

Q10

Key Tokens



PrefixLM + Document Masking

édef prefix_mask(b, h, q_idx, kv_idx):
 return kv_idx < prefix_length

prefix_lm_causal = or_masks(prefix_mask, causal_mask)
doc_prefix_lm_causal_mask = generate_doc_mask_mod( |
. . Prefix Lm Document Mask
prele_lm_Causal, document_ld KYO K\/l Kv2 KV3 Kv4 KV5 KV6 KV7 KV8 KV9 KV10

Query Tokens
fo)
(6]

Q10

Key Tokens




¢ wh Chunting Zhou
~ @violet_zct

Modeling innovations:

* Global causal attention + bidirectional attention within each image is

crucial.

* Introducing modality-specific encoding and decoding layers improves
performance and can compress each image to 64 or even 16 patches!

4/5

A cute cat <BOI>'.E ;-;<EO|>What

<EOI>

What

Figure 4: Expanding on the causal mask, Trans-
fusion allows patches of the same image to con-
dition on each other.

9:01 AM - Aug 21, 2024 - 25.7K Views

ch/ C4 Wiki Llama
age PPL () PPL({) Acc({
24 10.3 5.9 52.2
56 10.4 6.0 51..7
64 10.9 6.3 49.¢&
16 11.7 6.9 47.7
56 10.3 5.9 51.6
64 10.7 6.2 50.7
16 11.4 6.6 49.2

insfusion models with different pa
>st within architecture.

f.{'é Mark Neumann
<& ©@MarkNeumannnn

Pytorch Devs: Flex Attention is a beautiful computational abstraction
which uses compilation and caching to create fused kernels for
blocksparse attention patterns

Me: | will use it to implement this attention pattern

Pytorch Devs: .... plz

Edge Connectivity in the Batch .5
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i"?‘-'

64 -
0.6

72~
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6:34 PM - Nov 1,2024 - 25.3K Views



Performance

Attention Variants Comparison
Forward Pass + Causal Masking (H100)

400 A

350 -

300 ~

250 A

200 A

Speed (TFLOPs/s)

150

100 -

50 A

Flex-Default
Flex-Prescale
Flex-ContiguousBlocks
Flex-MaxAutotune
FlashAttention2
CuDNN
FlashAttention3

512

1024

2048 4096
Sequence Length

8192

16384




FlexAttention is an “abstraction”

It hides away “how do you write an efficient flashattention implementation
with arbitrary masking”, but exposes “different attention variants”

It solves the problem that “writing primitive PyTorch ops is too slow/brittle”,

while solving the problem that “modifying Attention kernels is a hard/involved
process”

Personally, | think this is the most “interesting” kind of work in systems
(coming up with the right abstractions).



Large-Scale Training



How do you even think about large-scale training?
DDP, FSDP, TP, PP, etc.?

But how do we choose between them?

Which one should we be using?

If our GPUs became 8x faster how would that change our parallelism
strategy?
If we had to train across very-low bandwidth networking how would that

change our parallelism?

Think about the “system”, not about the technique.



Systems-Level Thinking for Distributed ML

Question: What are we trying to optimize?
Answer 1: We're trying to optimize the throughput of our model.

Answer 2: Given the model and batch size we're training with, optimize the
throughput.

Answer 3: Given the model and batch size we’re training with, maximize the
amount of time we’re doing matrix multiplications, and minimize the time
spent

We're trying to come up with some “abstraction” to make our life easier.



Normal Forwards and Backwards
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Zero-1/Optimizer State Sharding




Zero-3/Fully Sharded Data Parallel




Why can’t we just only use FSDP?

Observation 1: If the total computation time exceeds FSDP’s total
communication time, then FSDP’s communication can be fully overlapped
and is considered to be “free”.

When we can use FSDP

Compute Time > Communication Time



Assumptions

1. The global batch size we're using is identical
2. The model architecture is identical

Therefore... Observation 2: How long we spend on compute is independent of
our parallelism strategy*

Total Compute Op LD
D D D




What happens to compute and comms when we
double GPUs?

Compute: Doubling our number of devices halves how long our compute takes

Comms: Our FSDP comms don’t get any faster as we scale how many devices
we have*

Time
'/




Concrete Numbers on Scaling with FSDP

FSDP comms time == Computation time

FSDP comms time

= 70 billion [parameters] * 2 [bytes per param] * 3 [collectives (2 allgathers
and a reducescatter)] / 200 billion [Gigabytes/second internode bandwidth]

= 70 billion * 2 * 3/100 billion

= 2.1 seconds

Computation time

= (70 billion [parameters] * 6 [flops per param per token] * 4 million [total
tokens]) /200 trillion [teraflops of fp16 compute]/4000 [GPUs]

= 70 billion * 6 * 8 million / 200 trillion / 4000

= 2.1 seconds



Local Batch Size Constraint

If we have 8 million tokens global batch size, and 8k sequence length, then we
only have 1000 sequences!

Since FSDP requires one sequence per GPU, we can’t scale over 1000 GPUs.



If you’re scaling FSDP, there are 4 situations

Case 1: You haven’t hit either the local batch size limit or the FSDP comms
limit.
Case 2: You’ve hit the local batch size limit, but not the FSDP comms limit.

Case 3: You’ve hit the FSDP comms limit, but not the local batch size limit.

Case 4: You’ve hit the FSDP comms limit and the local batch size limit.



Case 1: You haven’t hit either the local batch size
limit or the FSDP comms limit.

Yay! Keep using FSDP
Qo
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Case 2: You’'ve hit the local batch size limit, but not

the FSDP comms limit.

Solution: Use CP or TP.
Note that PP does not help!




Case 3: You'’ve hit the FSDP comms limit, but not
the local batch size limit.

Solution: Use PP (or inter-node TP)




Case 4: You’ve hit the FSDP comms limit and the
local batch size limit.
Solution: Use CP/TP + PP or inter-node TP




In our setting, how does increasing PP effect the
bubble size?

Assumptions
A: Significant Increase

1. The global batch size we’re using is identical
B: Slight Increase/No Change > T

ne model architecture is identical
C: Significant Decrease

https://claude.site/artifacts/06c22826-521a-4210-8869-824f43b9eba5



https://claude.site/artifacts/06c22826-52fa-4210-8869-824f43b9eba5

Abstraction Leak: GPUs don’t error(?)

10 Failures per 1000 node-days: https://arxiv.org/pdf/2410.21680vV]
With 1 node, that’s one failure per 100 days.

With 100 nodes, that’s one failure per day.
With 10000 nodes (80k GPUs), that’s one failure per 15 minutes.

Uh oh....


https://arxiv.org/pdf/2410.21680v1

Fault Tolerant Training

If a GPU dies, instead of killing the whole job, let’s just drop the “replica” that
that GPU is part of.

This leads to us running with a (reduced) global batch size (not semantics
preserving).



Latency “Wall”

Training compute (FLOP)
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Diloco (semi-sync training)
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/ Replicas Training
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’ Replicas Training
for H inner steps

- - - - —

'i,(f) v100f l:

Outer Optimization

62 ]< o000

Outer Optimization

(1)

Pretrained Model
| 6@

[ n(2) )
k03 TPUV5 0}

ro/(f) V1005

o e e s e e e En e e e e s e e e S e s e s e s e o e s o e s e e En e s e e S e e S S S EE S N D S EE D G G e s e ae e s am e

Figure 1 | DiLoCo: First, a pretrained model 6(°) is replicated k times (in this illustration k = 4) and
each worker Gi(l) trains a model replica on its own shard of data for H steps independently and in
parallel. Afterwards, workers average their outer gradients and an outer optimizer updates the global
copy of the parameters (1), This will then be re-dispatched to the workers. The process repeats T
times (in this illustration only the first two iterations are displayed). Each replica can be trained in
different locations of the world, with different accelerators.



Interesting Future Questions

1. How can we modify our neural network architectures to
be more fault tolerant?

2. Can we improve our optimizers to deal better with our
communication requirements?



Thanks for listening!



Bonus things | can talk about
Async-TP
Zero-Bubble Pipeline Parallelism

Context Parallelism



